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Abstract. The effect of changing the lattice action for the gluon field on the recently observed [F. Farchioni,
R. Frezzotti, K. Jansen, I. Montvay, G.C. Rossi, E. Scholz, A. Shindler, N. Ukita, C. Urbach, I. Wetzorke,
Eur. Phys. J. C 39, 421 (2005); hep-lat/0406039] first order phase transition near zero quark mass is
investigated by replacing the Wilson plaquette action by the DBW2 action. The lattice action for quarks
is unchanged: it is in both cases the original Wilson action. It turns out that Wilson fermions with the
DBW2 gauge action have a phase structure where the minimal pion mass and the jump of the average
plaquette are decreased, when compared to Wilson fermions with Wilson plaquette action at similar values
of the lattice spacing. Taking the DBW2 gauge action is advantageous also from the point of view of the
computational costs of numerical simulations.

1 Introduction

A basic feature of the low-energy dynamics in quantum
chromodynamics (QCD) is the spontaneous chiral sym-
metry breaking implying the existence of light pseudo-
Goldstone (pseudoscalar) bosons. The associated phase
structure near zero quark masses has to be reproduced
in the continuum limit by the lattice-regularized formula-
tions but it is in general modified by lattice artifacts at
non-vanishing lattice spacing. In lattice theories based on
Wilson-type quark actions the possible phase structures
have been investigated up to O(a2) in the lattice spac-
ing a by Sharpe and Singleton [2] in the framework of
low-energy chiral Lagrangians [3,4] and using the effec-
tive continuum description of cut-off effects [5,6]. Their
results allow for two possible “scenarios”: the existence
of the Aoki phase [7] or, alternatively, a first order phase
transition near zero quark mass.

In a recent numerical simulation [1,8] the phase struc-
ture of lattice QCD with Wilson fermions and Wilson
gauge action has been investigated with the help of the
twisted mass Wilson fermion formulation [9,10]. For fixed
values of a, smaller than a ≈ 0.2 fm, evidence for a first
order phase transition line, near zero quark mass in the
plane of untwisted and twisted quark mass, has been found
corresponding to the “second scenario” of [2]. It is im-
portant to remark that this line is finite and ends at a

a e-mail: montvay@mail.desy.de

particular value of the twisted quark mass µc. This im-
plies metastability and a non-zero minimum of the abso-
lute value of quark- (and pion-) masses. These are lattice
artifacts which are expected to vanish in the continuum
limit where µc = 0 and the first order phase transition line
shrinks to a singular point. (For generalizations of the re-
sults of [2] for non-zero twisted mass see [11–13].) Consid-
ering, besides the bare quark masses, the bare gauge cou-
pling, too, near the continuum limit the first order phase
transition spans a surface, as it is schematically shown by
Fig. 1.

It might be speculated that at the microscopic level the
occurrence of the first order phase transition at a > 0 is
accompanied by a massive rearrangement of small eigen-
values of the Wilson–Dirac operator. The detailed proper-
ties and, in particular, the strength of the first order phase
transition does probably depend on the number and distri-
bution of these eigenvalues. It is known that some type of
small eigenvalues, especially real ones, are associated with
small topological dislocations of the gauge field. A high
probability of these dislocations and of the correspond-
ing small eigenvalues is presumably a cut-off effect which
can be diminished by an appropriate choice of the lattice
action. In fact, it is known [14–17] that the small topo-
logical dislocations can, indeed, be suppressed by taking
renormalization group improved (RGI) gauge actions as
the Iwasaki action [18] or the DBW2 action [19].
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Fig. 1. The schematic view of the first order phase transition
surface in the (β, κ, µ) space close to the continuum limit. (β is
the bare gauge coupling, κ is the hopping parameter, µ is the
bare twisted quark mass, µκ ≡ (2κ)−1 is the bare untwisted
quark mass.) The crosses mark the second order boundary line
of the first order phase transition surface. The strong coupling
region near β = 0 is not shown in this figure

In the present paper we try to answer the question
whether the combination of RGI gauge actions with the
Wilson fermion action does shrink the first order phase
transition line near zero quark mass. Here we restrict our-
selves to the study of the DBW2 gauge action which has
been successfully applied also in dynamical domain wall
fermion simulations [20]. The goal of the present paper is
to qualitatively show how a change of the gauge action will
modify the phase structure. Hence, we do not aim here at
a high precision study.

The Iwasaki action is often used in dynamical quark
simulations by the CP-PACS and JLQCD Collaborations,
in particular, in combination with the Sheikholeslami–
Wohlert clover improved Wilson fermion action [6]. Earlier
results of the JLQCD Collaborations indicate [21] that, in-
deed, a metastability seen in the average plaquette can be
suppressed by replacing the Wilson plaquette action by
the Iwasaki action. (See also [22], and for a review of ear-
lier results on the phase structure of QCD, see [23]. An
early discussion of the phase structure of QCD can also
be found in [24].)

The plan of this paper is as follows: in the next section
the lattice action and some parameters of the update algo-
rithm are defined. In Sect. 3 we present the results of the
numerical simulations. Section 4 is devoted to the inves-
tigation of the eigenvalue spectrum of the Wilson–Dirac
operator near the origin. The last section contains some
discussion and concluding remarks.

2 Lattice action and simulation algorithm

2.1 Lattice action

We apply for quarks the lattice action of Wilson fermions,
which can be written as

Sq =
∑

x

{(
χx[µκ + iγ5τ3µ]χx

)

−1
2

±4∑
µ=±1

(
χx+µ̂Uxµ[r + γµ]χx

)}
. (1)

Here the (“untwisted”) bare quark mass in lattice units is
denoted by

µκ ≡ am0 + 4r =
1
2κ

, (2)

r is the Wilson parameter, set in our simulations to r =
1, am0 is another convention for the bare quark mass in
lattice units and κ is the conventional hopping parameter.
In (1) the twisted mass µ is also introduced. Uxµ ∈ SU(3)
is the gauge link variable and we also defined Ux,−µ =
U†

x−µ̂,µ and γ−µ = −γµ.
For the SU(3) Yang–Mills gauge field we apply the

DBW2 lattice action [19] which belongs to a one-
parameter family of actions obtained by renormalization
group considerations. These actions also include, besides
the usual (1× 1) Wilson loop plaquette term, planar rect-
angular (1 × 2) Wilson loops:

Sg = β
∑

x

(
c0

4∑
µ<ν; µ,ν=1

{
1 − 1

3
Re U1×1

xµν

}

+c1

4∑
µ�=ν; µ,ν=1

{
1 − 1

3
Re U1×2

xµν

} , (3)

with the normalization condition c0 = 1 − 8c1. (The no-
tation c0,1 is conventional. Of course, c1 should not be
confused with the parameter c1 in the effective potential
of [2,1].) The coefficient c1 in (3) takes different values for
various choices of RGI actions, for instance,

c1 =

{
−0.331 Iwasaki action,

−1.4088 DBW2 action.
(4)

Clearly, c1 = 0 corresponds to the original Wilson gauge
action with the plaquette term only. Note that for c1 =
−1/12 one obtains the tree-level improved action in the
Symanzik improvement scheme [25].

2.2 Twist angle

An important quantity is the twist angle ω, the polar an-
gle in the plane of the untwisted and twisted mass (µκ, µ).
We present here a method which allows one to determine
the twist angle only on the basis of symmetry of the cor-
relators defined in a given point of bare parameter space
(see also [8]).
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Following [10], we introduce the twist angle ω as the
chiral rotation angle between the renormalized (physical)
vector and axialvector currents V̂ a

xµ, Âa
xµ and the bare

bilinears of the χ-fields V a
xµ, Aa

xµ:

V a
xµ ≡ χx

1
2
τaγµχx , Aa

xµ ≡ χx

1
2
τaγµγ5χx . (5)

With the renormalization constants ZV and ZA we have

V̂ a
xµ = ZV V a

xµ cos ω + εab ZAAb
xµ sin ω , (6)

Âa
xµ = ZAAa

xµ cos ω + εab ZV V b
xµ sin ω , (7)

where only charged currents are considered (a = 1, 2).
The twist angle ω is related to the ratio of the renor-

malized twisted and untwisted masses entering the chiral
Ward identities [10]. (In [10] this definition of the twist an-
gle was called α.) We define, in addition, the two auxiliary
angles

ωV = arctan(ZAZ−1
V tanω) ,

ωA = arctan(ZV Z−1
A tanω) . (8)

In terms of ωV , ωA (6) and (7) are written as

V̂ a
xµ = NV (cos ωV V a

xµ + εab sin ωV Ab
xµ) , (9)

Âa
xµ = NA (cos ωAAa

xµ + εab sin ωAV b
xµ) (10)

where the overall multiplicative renormalization is (X =
V, A):

NX =
ZX

cos ωX

√
1 + tanωV tanωA

. (11)

From (8) it follows that

ω = arctan
(√

tanωV tanωA

)
. (12)

As shown by the relations in (8) and (12), the values of
ω, ωV and ωA coincide for |ω| = 0, π/2. However, for
other angles they are, in general, different and the dif-
ference goes to zero in the continuum limit only as fast as
ZV /ZA → 1.

A possibility to determine ωV and ωA is to impose
the vector and axialvector Ward identities, respectively,
with a suitable insertion operator Ôx. For instance, in the
vector case one can use the Ward identity

∑
x,y

〈∂∗
µV̂ +

xµ Ô−
y 〉 = 0 =⇒ tanωV =

−i
∑

x,y〈∂∗
0V +

x0 Ô−
y 〉∑

x,y〈∂∗
0A+

x0 Ô−
y 〉 .

(13)
Here the indices + and − refer to the charged compo-
nents τ± ≡ τ1 ± iτ2 and ∂∗

µ denotes the backward lattice
derivative.

Another possibility for determining the twist angles
ωV , ωA and ω is to impose parity conservation for suit-
able matrix elements, for instance with the pseudoscalar
density P±

x = χ̄x
τ±
2 γ5χx:∑

x,y

〈Â+
x0 V̂ −

y0〉 =
∑
x,y

〈V̂ +
x0 P−

y 〉 = 0 . (14)

These equations admit the solution

tanωV =
−i
∑

x,y〈V +
x0 P−

y 〉∑
x,y〈A+

x0 P−
y 〉 , (15)

tanωA =
i
∑

x,y〈A+
x0 V −

y0〉+tanωV

∑
x,y〈A+

x0 A−
y0〉∑

x,y〈V +
x0 V −

y0〉−itanωV

∑
x,y〈V +

x0 A−
y0〉

.

(16)

In (14) one can also take the derivatives of the currents
instead of the currents themselves. For instance, taking
the divergence of the vector current in the second equality
gives the same equations as (13) with Ô = P .

Once ωV and ωA are determined, the twist angle ω
can be obtained by (12). This method for determining the
twist angle can also be used in case of simulations with
partially quenched twisted mass quarks. The estimate of
ω is, of course, affected by O(a) ambiguities. For non-
zero twisted mass µ 	=0 the critical bare untwisted quark
mass µκ = µκcr , or the critical hopping parameter κcr =
(2µκcr)

−1, is signaled by |ω| = π/2.

2.3 Updating algorithm

Concerning updating in our numerical simulations, we
apply the two-step multi-boson (TSMB) algorithm [26],
which has been tuned to QCD simulations with Wilson
quarks in previous works [1, 27–30]. (For details and refer-
ences see in these papers.) In [27] there is an approximate
formula for the computational cost of an update cycle in
terms of matrix-vector-multiplications (MVMs):

NMVM

cycle

 6(nBn1NΦ + NU ) + 2nB(n2 + n3)NC + IGFG .

(17)
Here n1,2,3 are the orders of polynomials used in the two
approximation steps, nB gives the multiplicity in determi-
nant breakup, NΦ is the number of local bosonic sweeps
per update cycle, NU the number of local gauge sweeps,
NC the number of global Metropolis accept–reject correc-
tion steps, and IG and FG give the number of MVMs in
the global boson heatbath and its frequency, respectively.

The number of MVMs can also be converted into the
number of floating point operations by noting that in our
code, for vanishing twisted mass, we have

1 MVM 
 1.2 · 103 Ω flop , (18)

where Ω is the number of lattice points. For non-zero
twisted mass there is an additional factor 2 due to the
flavor index. (This does, however, not mean that twisted
mass fermions are a factor of two more expensive since in
this case the two flavors are incorporated in one fermion
matrix and the polynomial approximations have lower or-
ders; see Appendix A.2 of [1].)

Measuring the integrated autocorrelations τint as a
function of the quark mass in lattice units amq and of
the lattice volume Ω, previous experience tells that one



76 F. Farchioni et al.: Phase structure of lattice QCD

can approximate the computational cost of a number of
update cycles equal to τint by the simple formula

Cτint 
 F (amq)−z Ω . (19)

According to [27], in case of combining the Wilson fermion
action with the Wilson plaquette gauge action, the power
of the inverse quark mass is close to z = 2. The over-
all factor F depends on the quantity under investigation.
For Wilson quarks with Wilson gauge action the previous
results can be summarized, for instance, for the average
plaquette and for the pion mass determined with a ran-
domly chosen source by [30]

Fplaq 
 7 · 106 flop , Fmπ 
 106 flop . (20)

Let us note that the approximate formula in (19) has been,
up to now, verified only for some fixed values of the gauge
coupling β. The β-dependence of F has not yet been sys-
tematically investigated.

3 Numerical simulation results

Our aim is to compare the phase structure of two-flavor
(Nf = 2) QCD near zero quark mass for Wilson lattice
fermion action and DBW2 gauge action with the one ob-
served in [1,8] for Wilson fermion action and Wilson (pla-
quette) gauge action. Since the phase structure obviously
depends on the lattice spacing, we have to find the values
of the bare parameters (β, µκ) in the lattice action (1)–(3)
which correspond to quark mass mq 
 0 and to the same
lattice spacing as in [1,8], namely a 
 0.2 fm. For hav-
ing a fair comparison, the lattice volume has to be kept
constant, too, because the metastability phenomenon does
also depend on it. Therefore, we shall compare the results
on 123 × 24 lattices.

A possibility for facilitating the parameter tuning is to
explore the position of the high-temperature phase tran-
sition on lattices with time extension Nt = 4 and Nt = 6
for small quark masses, which mark a = 0.25–0.30 fm and
a = 0.17–0.20 fm, respectively. (This method with Nt = 4
has been applied, for instance, in [27].) A useful first ori-
entation is also provided by the quenched studies. (For a
useful collection of data on RGI gauge actions see [31] and
references therein). For specifying the actual value of the
lattice spacing we determine the Sommer scale parameter
in lattice units r0/a [32], which we set by definition to be
r0 ≡ 0.5 fm, independently from the quark mass.

In order to localize the Nt = 4 high-temperature phase
transition we fixed the gauge coupling at β = 0.55 and
changed the bare quark mass µκ (or, equivalently, the hop-
ping parameter κ = (2µκ)−1). The results on an 83×4 lat-
tice for the absolute value of the Polyakov line and average
plaquette are given in Fig. 2. As it is shown by the figure,
the transition with the DBW2 action is rather smooth,
barely visible. This has to be contrasted with the strong
and sudden increase of both Polyakov line and average
plaquette in case of the Wilson plaquette action, which is
also shown for comparison in Fig. 2.

Table 1. Bare couplings and parameters of the TSMB algo-
rithm in runs with the DBW2 gauge action. The determinant
breakup multiplicity is nB = 4 in all runs. Small letters label
runs on 83 × 16 lattices at β = 0.55 whereas capital letters
stand for runs on 123 × 24 lattices at β = 0.67. The suffix l
and h denote “low” and “high” plaquette phase, respectively.
Those runs with a calligraphic letter are performed with an
additional twisted mass term (µ = 0.01). The number of an-
alyzed configurations is given in the last column. An asterix
on these numbers denotes that a few configurations have very
low (� 1) reweighting factors. The analyzed gauge configu-
rations are separated by 10 update cycles, except for runs (a)
and (Al), where they are separated by 100 and 2 update cycles,
respectively

run κ n1 n2 n3 λ ε Nconf

(a) 0.184 22 100 102 24 2.4·10−3 116
(b) 0.186 22 200 220 23 5.8·10−4 381
(c) 0.188 24 500 520 23 5.7·10−5 165
(d) 0.190 30 900 940 22 1.1·10−5 66∗

(e) 0.192 30 1400 1440 22 2.7·10−6 159∗

(f) 0.193 26 650 680 22 2.7·10−5 192
(g) 0.194 22 300 320 21 2.1·10−4 111
(Al) 0.165 28 210 220 26 1.3 · 10−3 82
(Cl) 0.167 28 500 510 25 1.3 · 10−4 62
(Ch) 0.167 30 1100 1200 25 1.3 · 10−5 220
(Dl) 0.168 30 1100 1200 25 1.2 · 10−5 82∗

(Dh) 0.168 30 1100 1200 25 1.2 · 10−5 211
(Eh) 0.170 28 900 920 24 4.8 · 10−5 194
(Fh) 0.172 28 500 510 24 1.2 · 10−4 151
(Gh) 0.175 28 500 510 23 1.1 · 10−4 78∗

(Al) 0.165 16 250 270 24 1.2 · 10−3 540
(Bl) 0.166 18 420 460 24 3.6 · 10−4 58
(Ch) 0.167 18 420 460 24 3.6 · 10−4 139
(Dh) 0.168 18 420 460 24 3.6 · 10−4 321
(Eh) 0.170 18 420 460 24 3.6 · 10−4 100

A similar analysis on 123 × 6 lattices at β = 0.67
gives qualitatively similar results but there the difference
between the DBW2 and the Wilson plaquette action is
smaller because the transition for the Wilson plaquette
action becomes weaker.

3.1 Results on an 83 × 16 lattice at β = 0.55

The runs on an 83 × 16 lattice at β = 0.55 and µ = 0
were started from the low-temperature phase by taking
four copies in the time direction of some of the 83 × 4
lattices. The parameters of these runs are specified in the
first part of Table 1.

Besides the hopping parameter κ also some parameters
of the TSMB updating algorithm are specified: the orders
of the polynomials used n1,2,3 and the interval covering
the eigenvalues of the squared preconditioned hermitean
quark matrix [ε, λ].
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Fig. 2. Upper panels: the signals of the Nt = 4 non-zero temperature transition on an 83 × 4 lattice with the DBW2 gauge
action. Lower panels: the same with Wilson gauge action. Left panels: absolute value of the Polyakov line, right panels: average
plaquette, both as a function of κ

In the 83 × 16 runs we looked for signals of metasta-
bility but we did not find any. The results for some inter-
esting quantities are collected in the first part of Table 2:
the pion (i.e. pseudoscalar meson) and ρ-meson masses
and the bare quark mass in lattice units amPCAC

χ . Some
of these quantities are also shown in Fig. 3. The scale pa-
rameter in lattice units r0/a was also determined. We note
in passing that at this small value of β and with our partly
low statistics the evaluation of r0 is rather difficult. Nev-
ertheless, in order to estimate quantities also in physical
units, we performed a purely statistical analysis for r0, be-
ing aware of the fact that systematic effects can be large.

The bare quark mass amPCAC
χ is defined by the PCAC

relation containing the axialvector current Aa
xµ in (5) and

the pseudoscalar density insertion:

amPCAC
χ ≡ 〈∂∗

µA+
xµ P−

y 〉
2〈P+

x P−
y 〉 . (21)

Since for the moment we do not determine the Z-
factors of multiplicative renormalization, the bare quark
mass amPCAC

χ contains an unknown O(1) Z-factor Zq ≡
ZP /ZA. In the following analysis we extracted the quark
mass with the method detailed in [27]; see Sect. 3.1.1 there.

In agreement with the absence of a signal for metasta-
bility, the µκ-dependence of the pion mass and quark
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Fig. 3. Results of the numerical simulation on an 83×16 lattice
at β = 0.55: upper panel the square of the pion mass (amπ)2,
lower panel the PCAC quark mass amPCAC

χ . In the upper panel
the dashed lines are extrapolations to zero pion mass: at the
right it is a linear fit of four points, at the left a straight line
connecting two points with small quark mass

mass in Fig. 3 is consistent with the absence of a first or-
der phase transition at this gauge coupling (β = 0.55).
A rough estimate for the value of the lattice spacing
is a 
 0.30 fm in the positive quark mass phase and
a 
 0.23 fm in the negative quark mass phase. The upper
panel in Fig. 3 suggests the existence of a short interval
(µκ ∈ [2.62, 2.63] or κ ∈ [0.190, 0.191]) of an Aoki phase
near zero quark- and pion masses. This behavior is quali-

Table 2. Results of runs specified in Table 1 for different quan-
tities

run amπ amρ mπ/mρ amPCAC
χ

(a) 0.6962(69) 1.0015(75) 0.6952(37) 0.07086(85)
(b) 0.5325(60) 0.9013(75) 0.5908(57) 0.03890(75)
(c) 0.3652(49) 0.840(26) 0.435(13) 0.0154(10)
(d) 0.081(24) 0.62(38) 0.130(78) 0.0012(15)
(e) 0.594(51) 1.80(30) 0.355(42) −0.0430(70)
(f) 0.888(19) 1.794(30) 0.495(13) −0.0870(38)
(g) 0.997(23) 1.820(59) 0.548(17) −0.0995(66)
(Al) 0.454(04) 0.724(25) 0.627(18) 0.0414(05)
(Cl) 0.343(07) 0.735(32) 0.466(21) 0.0222(11)
(Ch) 0.313(22) 0.776(125) 0.403(67) −0.0222(28)
(Dl) 0.153(12) 0.445(109) 0.344(91) 0.0053(17)
(Dh) 0.380(31) 1.144(88) 0.332(37) −0.0335(54)
(Eh) 0.644(15) 1.324(75) 0.487(27) −0.0834(38)
(Fh) 0.840(23) 1.468(52) 0.572(25) −0.1295(77)
(Gh) 1.005(44) 1.801(81) 0.558(28) −0.1585(103)
(Al) 0.4641(45) 0.7228(58) 0.6421(53) 0.03803(81)
(Bl) 0.341(05) 0.634(55) 0.538(45) 0.0177(22)
(Ch) 0.291(12) 0.607(232) 0.480(178) −0.0149(22)
(Dh) 0.472(07) 1.035(72) 0.456(32) −0.0469(16)
(Eh) 0.712(14) 1.136(65) 0.627(34) −0.0946(72)

tatively similar to the one for the Wilson plaquette action
which also shows the existence of the Aoki phase at strong
gauge coupling [33].

3.2 Results on a 123 × 24 lattice at β = 0.67

With a short investigation of the high-temperature phase
transition on a 123 × 6 lattice one can easily localize the
gauge coupling β and bare quark mass µκ = (2κ)−1 where
the lattice spacing is about a factor 3/2 smaller than at
β = 0.55. It turned out that one can take β = 0.67 and
κ 
 0.17. Fixing β = 0.67 and changing κ we performed
several runs on a 123 × 24 lattice. In this way the physical
volume of the lattice is approximately the same as the
one of an 83 × 16 lattice at β = 0.55. In order to be able
to compare with the results of [1], besides the runs with
µ = 0, at this β we also considered a non-vanishing twisted
mass µ = 0.01.

First we looked also here at µ = 0 for a signal of
metastability in the average plaquette and we found it
near κ = 0.167–0.168, as it is shown by the upper panel
of Fig. 4. Note that the average plaquette values are sub-
stantially higher here than at β = 5.2 with the Wilson pla-
quette gauge action in [1]: Aplaq ≡ 〈 1

3Re Tr Uplaq〉 
 0.59
instead of Aplaq 
 0.52. This qualitatively shows that the
gauge field with DBW2 is smoother.

We also determined the pion, ρ-meson and quark
masses, with the results given in Table 2. (For a graphical
representation of some of these results see also the upper
panels of Fig. 5.) For the extraction of r0/a we performed
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Fig. 4. The average plaquette at β = 0.67 on a 123 ×24 lattice
as a function of the hopping parameter κ: upper panel µ = 0
and lower panel µ = 0.01, respectively

only a statistical analysis also here, neglecting the system-
atic effects. Let us give a range of values for the runs in
Table 2. For Al to Dl we find 2.37 < r0/a < 2.76 in the low
and for Ch to Gh 2.72 < r0/a < 3.17 in the high plaquette
phases, respectively. For Al, Bl we find 2.39 < r0/a < 2.54
in the low and for Ch to Eh we find 2.89 < r0/a < 3.07 in
the high plaquette phase.

From the values of the scale parameter r0/a we deter-
mined the lattice spacing, and found a 
 0.18–0.21 fm in
the positive and a 
 0.16–0.18 fm in the negative quark
mass phase, respectively. This is quite close to the values
obtained in both phases with the Wilson plaquette gauge
action at β = 5.2 in [1].

Going to the positive twisted mass µ = 0.01, the
metastability in the average plaquette disappears on our
123 ×24 lattice, as it is shown by the lower panel of Fig. 4.
Having in mind the strong metastability signal in the aver-
age plaquette observed on a 123×24 lattice at β = 5.2 and
µ = 0.01 with the Wilson plaquette gauge action in [1], the
absence of the metastability here signals a dramatic im-
provement of the phase structure due to the DBW2 gauge
action. The presence of metastability at µ = 0 and the ab-
sence of it at µ = 0.01 indicates the existence of a rather
short first order phase transition line near the origin in the
(µκ, µ)-plane. Of course, for a precise localization of the
first order phase transition line a detailed study of the in-
finite volume limit is required, which is beyond the scope
of this paper.

An important question is the minimal value of the pion
mass mmin

π associated to the first order phase transition
line. A precise definition of mmin

π could be the value of
the infinite volume pion mass just at the position of the
first order phase transition, defined by the equal depth of
the two free energy minima in the infinite volume limit.
To obtain this would be rather demanding. Although the
volume dependence could be studied beyond our volume
extension of L 
 2.4 fm, for instance on a 163 × 32 lattice,
the precise comparison of the free energy minima would be
quite difficult. An approximate determination of mmin

π can
be obtained by requiring the equality of the pion mass in
lattice units amπ in the two phases on our 123×24 lattices.
For this a linear extrapolation of (amπ)2 from the points
on both sides of the phase transition can be considered.
As shown in the upper left panel of Fig. 5, our result at
µ = 0 is (amπ)2 = 0.0881. This implies, with the range
of r0 values given above, that mmin

π 
 251 MeV in the
positive quark mass phase and mmin

π 
 374 MeV in the
phase with negative quark mass.

The minimal charged pion mass at µ = 0.01 is mmin
π 


360 MeV (see the lower left panel of Fig. 5). This originates
from the non-zero value of the twisted quark mass and not
from the presence of a first order phase transition.

In the right panels of Fig. 5 the bare quark mass in
lattice units is shown. The dashed lines are linear fits to
the points with positive and negative quark mass, respec-
tively. At zero twisted mass (upper panel) the metastabil-
ity region near the first order phase transition is clearly
displayed. At µ = 0.01 (lower panel) the difference be-
tween the two dashed lines is smaller. This difference may
be interpreted as a consequence of a cross-over in the con-
tinuation of the first order phase transition line. In the
figure there is also a linear fit to all points shown (full
line) which goes reasonably close to every point. The two
dashed lines also give lower and upper bound estimates
for the critical hopping parameter: 0.1661 ≤ κcr ≤ 0.1689.
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Another way to estimate the critical hopping parame-
ter (i.e. critical bare untwisted quark mass) is to determine
the twist angle and find κcr = (2µκcr)

−1 where it equals
π/2. Considering, for definiteness, the twist angle ωV de-
fined in Sect. 2.2, the fit in Fig. 6 gives κcr = 0.16651(2),
in good agreement with the previous estimate. (Actu-
ally the numbers in Fig. 6 come from the vector Ward
identity (13) but, within errors, (15) gives compatible re-
sults.) The Z-parameter appearing in this fit for ωV is
ZoV ≡ ZAZS/(ZV ZP ) (see Sect. 2.2 and [10]). According
to Fig. 6 we have ZoV = 0.959(30). Since from an analo-
gous fit to ωA one could determine ZoA ≡ ZV ZS/(ZAZP ),
this also offers a relatively easy way to obtain the Z-
parameter combinations ZA/ZV and ZP /ZS .

The quantities (r0mπ)2 and amPCAC
χ can also be plot-

ted against each other (see Figs. 7 and 8 for µ = 0 and
µ = 0.01, respectively). Figure 7 and the data in Table 2
show that at µ = 0, in the metastable region beyond the
minimal pion mass, one can also reach values close to the
physical value mπ 
 140 MeV.

3.3 Topological charge

The RGI gauge actions, and in particular the DBW2 ac-
tion, are known to slow down the transitions between dif-
ferent topological sectors both in quenched [16] and in
dynamical domain wall simulations [20]. In order to check
this we determined the topological charge Qtop in some of
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the runs using a cooling method [34]. In the following we
denote the result from the cooling analysis by “topolog-
ical charge”, being aware of the fact that this definition
contains some degree of arbitrariness. However, for our
aim of testing the autocorrelation time this definition is
sufficient.

In the run with label (Ch) (123 × 24 lattice, β = 0.67,
µ = 0.01, κ = 0.167) the history of the topological charge
is shown in the upper panel of Fig. 9. (The lower panel is a
histogram of Qtop.) The analyzed configurations are sepa-
rated by 10 TSMB update cycles. In this point, according
to Table 2, the quark mass is about mq 
 0.3 mstrange and
the pion mass mπ 
 380 MeV. As the figure shows, the
topological charge is often changed. Its integrated auto-
correlation in this run is τ top

int 
 180, but there is obviously
a long tail of the autocorrelation which is not yet properly
taken into account in a run of this length. In any case, τ top

int
is substantially longer than those of the average plaquette
(τplaq

int 
 22) or of the pion mass (τmπ

int 
 6) in Table 3.
In another run, the one with label (Cl) (123 × 24 lat-

tice, β = 0.67, µ = 0, κ = 0.167), where the quark mass
is about mq 
 0.18 mstrange and the pion mass mπ 

295 MeV, the general picture is similar to Fig. 9. The inte-
grated autocorrelation here comes out to be τ top

int 
 70, but
this value is even less reliable because the run is shorter.

In spite of these relatively long autocorrelations, it is
clear that in a sufficiently long run, say of length 1000 τmπ

int ,
which would be needed anyway for a good statistics on
other quantities, the different topological sectors could be
properly sampled by the TSMB algorithm. Therefore, at
these bare parameter values, there is no problem with the
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suppression of the transitions between different topologi-
cal sectors.

3.4 Results about the update algorithm

In this paper we applied the TSMB update algorithm [26].
The estimates of the autocorrelations in different runs and
the cost estimates obtained using (17) are given in Table 3.
Since in our relatively short runs the autocorrelations can
only be estimated, say, within a factor of two, the numbers
in Table 3 give only a first orientation.

Qualitatively speaking, the 123 × 24 runs with “low
plaquette” (positive quark mass) have lower costs than
the corresponding runs with “high plaquette” (negative

Table 3. The cost of an update cycle Ccycle in thousands of
MVMs according to (17) and the estimated integrated autocor-
relation lengths in update cycles obtained from runs specified
by Table 1. The suffix plaq and mπ refer to the average pla-
quette and the pion mass, respectively. The last two columns
give the factors F calculated from (19) with z = 2

run Ccycle τplaq
int τmπ

int Fplaq/106 Fmπ /106

(a) 13 152 11.9
(b) 19 100 20 3.5 0.7
(c) 30 147 < 5 1.3 < 0.04
(d) 48 12 0.001
(e) 65 167 < 5 24 < 0.7
(f) 38 95 9 33 3.1
(g) 25 32 < 5 9.5 < 1.5
(Al) 19 21 < 5 0.8 < 0.2
(Cl) 29 18 15 0.3 0.3
(Ch) 50 53 33 1.5 0.9
(Dl) 51 77 < 5 0.1 < 0.01
(Dh) 51 113 7 7.8 0.5
(Eh) 43 61 11 22 3.9
(Fh) 30 56 < 5 33.4 < 3.0
(Gh) 31 52 6 48.4 5.6
(Al) 12 143 13 5.9 0.5
(Bl) 21 41 9 0.6 0.1
(Ch) 21 22 6 0.2 0.1
(Dh) 21 72 8 7.8 0.9
(Eh) 21 29 7 12.8 3.1

quark mass): at the same absolute value of the bare quark
mass the runs in the negative quark mass phase have in
most cases at least by an order of magnitude higher costs
than those in the positive quark mass phase. The reason of
the higher cost at negative quark mass is that the smallest
eigenvalues fluctuate more frequently to very small values.

There is also a general tendency that the overall fac-
tors F decrease for decreasing absolute value of the quark
mass. In fact, the data on F show that in the small quark
mass region an inverse quark mass power z = 1 is a better
approximation than z = 2, which has been observed in
previous simulations with the Wilson plaquette gauge ac-
tion [27–30,9]. At µ = 0 the overall factor for the average
plaquette Fplaq in the parameterization

Cτint 
 F (amq)−1 Ω (22)

turns out to be Fplaq 
 2 · 107 in the positive quark mass
phase and Fplaq 
 (2–3) ·108 at negative quark mass. The
corresponding numbers at µ = 0.01 are between these two
values.

Let us note that at the smallest quark masses a fi-
nal reweighting correction has to be applied because the
smallest eigenvalues cannot be always kept in the interval
of polynomial approximations. Sometimes they fluctuate
below the lower limit ε.



F. Farchioni et al.: Phase structure of lattice QCD 83

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Im
λ

Re λ

83 x 16 lattice
β = 0.55
κ = 0.184
c1 = -1.4088

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Im
λ

Re λ

83 x 16 lattice
β = 0.55
κ = 0.190
c1 = -1.4088

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Im
λ

Re λ

83 x 16 lattice
β = 0.55
κ = 0.194
c1 = -1.4088

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Im
λ

Re λ

83 x 16 lattice
β = 0.55
κ = 0.194
c1 = -1.4088

Fig. 10. Eigenvalues of the Wilson–Dirac fermion matrix (1) with small absolute value for µ = 0, β = 0.55 on an 83 ×16 lattice.
Upper left panel: κ = 0.184. Upper right panel: κ = 0.190. Lower panels: κ = 0.194 at the beginning of equilibration (left panel)
and after equilibration (right panel)

4 Eigenvalue spectra

Looking at the eigenvalue spectra of the Wilson–Dirac
fermion matrix (1) at small (untwisted) quark masses (see,
for instance, in Sect. 4 of [27]) it seems plausible that near
zero quark mass there has to be a massive rearrange-
ment of eigenvalues. This is because in the path integral
small eigenvalues are strongly supressed by the zero of the
fermion determinant. At the sign change of the quark mass
the eigenvalues have to somehow avoid the zero of the de-
terminant at the origin. It is plausible that this eigenvalue
rearrangement is related to the phase transition at zero
quark mass.

An interesting question is how the behavior of eigen-
values in the small quark mass region is influenced by a
non-zero twisted mass term.

We investigated the eigenvalue spectra by the Arnoldi
method on 83×16 and 123×24 lattices in some of the runs

listed in Table 1. Typically 100–200 eigenvalues were de-
termined on 10–30 independent gauge field configurations.
The parameters of the Arnoldi code were set for searching
the eigenvalues with the smallest absolute value.

The results at µ = 0 on an 83 × 16 lattice are shown
by Fig. 10. In the upper panels of the figure, where the
quark mass is positive, typical “half-moons” filled with
eigenvalues can be seen, which correspond to the figures in
[27]. At negative quark mass – in the lower part of Fig. 10
– an almost empty segment in the middle of the “half-
moon” appears. Comparing the two figures at negative
quark mass one can also see how this segment is gradually
emptied during equilibration.

It is remarkable that even after equilibration there are
some real (“zero-mode“) eigenvalues on the positive axis.
Our Arnoldi code did not find in these configurations any
negative real eigenvalues. In addition, it is quite surpris-
ing that, apart from the empty segment in the middle,
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Fig. 11. Eigenvalues of the Wilson–Dirac fermion matrix (1)
with small absolute value for µ = 0.01, β = 0.55 on an 83 × 16
lattice. Upper panel: κ = 0.184, lower panel: κ = 0.186

the half-moon-shaped deformation of the eigenvalue re-
gion observed at small positive quark masses does not
disappear for small negative quark masses either.

The effect of a non-zero twisted mass on the eigenvalue
spectrum on an 83 × 16 lattice is illustrated by Fig. 11. It
can be seen that the strip around the real axis −µ ≤
Im(λ) ≤ +µ is free from eigenvalues. Let us remark that
also in presence of a non-zero twisted mass we studied
the spectrum of the operator of (1), which corresponds to
the so-called “twisted basis”. In the “physical basis” [35],
for ω = π/2, the spectrum of the Dirac operator lies in a
vertical line parallel to the imaginary axis and is shifted
from the origin by µ (exactly as in the continuum).

Going to larger β (smaller lattice spacing) the visi-
ble difference is that the “half-moons” are straightened
and come closer to the origin; see Fig. 12. Otherwise most
qualitative features are unchanged. There is, however, a
marked difference in the number of real eigenvalues (for
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Fig. 12. Eigenvalues of the Wilson–Dirac fermion matrix (1)
with small absolute value at β = 0.67, κ = 0.168 on a 123 ×24
lattice. Upper panel: µ = 0, “low plaquette”; lower panel: µ =
0, “high plaquette”

µ = 0): in the upper panels of Fig. 10 there are lots of
them, whereas at larger β, in the upper panel of Fig. 12,
their number is substantially reduced.

The effect of changing the gauge action can be seen
by comparing Fig. 12 with the eigenvalue spectra in case
of the Wilson plaquette gauge action at a similar lattice
spacing a 
 0.2 fm in Fig. 13. The fact that in the case of
using the Wilson gauge action the pion mass is larger than
in the case of the DBW2 action is reflected by a movement
of the ”half-moons” farther away from the origin.

5 Conclusion

The main conclusion of this paper is that, indeed, exchang-
ing the Wilson plaquette gauge action with the (renormal-
ization group improved) DBW2 action shows substantial
effects on the phase structure. We performed a qualitative
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study of the phase structure of lattice QCD by changing
the gauge action and compared the Wilson plaquette and
DBW2 actions at a lattice spacing a 
 0.2 fm in the posi-
tive quark mass phase and a 
 0.17 fm in the phase with
negative quark mass. This means: at β = 5.2 for the Wil-
son plaquette action and β = 0.67 for the DBW2 action.
At this comparable situation the metastability signaled
by the existence of long living states with different aver-
age plaquette value and quark masses with opposite sign
becomes weaker and the minimal pion mass and the jump
in the average plaquette between the phases with positive
and negative quark mass decrease.

For vanishing twisted mass µ = 0 the metastability oc-
curs in the hopping parameter range 0.167 ≤ κ ≤ 0.168.
Going to the twisted mass value µ = 0.01, which is the
same as in the numerical simulations of [1,8], the metasta-
bility disappears on our 123×24 lattices. It might reappear
on larger lattices, but our 123 × 24 data indicate that the
jump in the average plaquette is at least by a factor of ten
smaller than the one observed in [1].

At a lower β value, β = 0.55, which corresponds to
lattice spacings a 
 0.30 fm and a 
 0.23 fm for posi-
tive and negative quark mass, respectively, our simulation
data are consistent with the existence of the Aoki phase.
This is similar to the situation for β ≤ 4.6 in case of the
Wilson plaquette action [33]. The schematic picture of the
suggested phase diagram in the (β, κ, µ) space, both for
DBW2 and Wilson plaquette gauge actions, is shown by
Fig. 14.

The minimal pion mass in a stable phase can be esti-
mated from our simulation data at β = 0.67 and vanishing
twisted mass on a 123 × 24 lattice to be mmin

π 
 250 MeV

β

µ

κ = (2µκ)-1

β1

Fig. 14. The schematic view of the phase transitions in the
(β, κ, µ) space for Wilson quarks with both DBW2 and Wil-
son plaquette gauge action (β is the bare gauge coupling, κ is
the hopping parameter, µ is the bare twisted quark mass, and
µκ ≡ (2κ)−1 is the bare untwisted quark mass.) The crosses
mark the second order boundary line of the first order phase
transition surface. At strong gauge coupling there is the sur-
face containing the Aoki phase, which ends at a point denoted
by β = β1. The figure does not extend down to β = 0 and only
one “finger” of the Aoki phase is shown

in the positive quark mass phase and mmin
π 
 375 MeV in

the phase with negative quark mass. On larger lattices this
value is expected to be 10–20% smaller due to the finite
volume effects which are non-negligible on the 123×24 lat-
tice, especially in the negative quark mass phase where the
lattice extension is only L 
 2.0 fm. At positive twisted
mass µ = 0.01 the estimate for the minimal charged pion
mass is mmin

π 
 360 MeV, a value entirely due to the non-
zero twisted mass and not to the first order phase transi-
tion.

Besides the pion- and ρ-meson masses, at non-
vanishing twisted mass, we also determined the twist an-
gle ωV as a function of the bare untwisted quark mass
µκ. The µκ-dependence of ωV can be well described by
the expected arctan-function (see Fig. 6). From the fit
one obtains the value of the critical hopping parameter
κcr = 0.16651(2) and an estimate of a combination of Z-
factors.

In some of the simulation runs we also monitored the
history of the topological charge (see, for instance, Fig. 9).
Although the autocorrelation of the topological charge is
markedly longer than those of the average plaquette or of
the pion mass, in a good statistics run with, say, thousand
times the integrated autocorrelation length of the pion
mass, the different topological sectors could be properly
sampled.
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In order to illustrate the rearrangement of the small
eigenvalues near the zero quark mass phase transition we
investigated in some detail the eigenvalue spectrum of the
non-hermitean fermion matrix defined in (1). To our sur-
prise, the transition from positive to negative quark mass
is signaled in the eigenvalue spectrum by the opening up
of an almost empty segment in the “half-moon” occupied
by the eigenvalues near the origin. The introduction of a
non-vanishing twisted mass causes the appearance of an
empty strip [−µ,+µ] on both sides of the real axis. The
effect of larger β is to straighten the “half-moon” occu-
pied by the small eigenvalues. At the same time the small
real eigenvalues at zero twisted mass, which are causing
the problem of the so-called “exceptional gauge configura-
tions” in partially quenched simulations, occur much less
frequently.

A welcome side-effect of introducing the RGI gauge ac-
tion is the speed-up of the TSMB update algorithm. (This
presumably also applies to other update algorithms, but
in this paper we only used TSMB.) This can be qualita-
tively understood by the reduction of the probability for
small size “dislocations” in the gauge field and for the
less frequent occurrence of small real eigenvalues. (This is
qualitatively similar to the conclusions of [36], obtained in
another setup.) The computational cost as a function of
the quark mass can be better approximated in the small
quark mass region by an inverse power behavior of only
(amq)−1 than by the behavior (amq)−2 observed previ-
ously with the Wilson plaquette action.

The results of the present paper indicate that the com-
bination of Nf = 2 Wilson quarks with the DBW2 gauge
action leads to a phase structure with a weaker first order
phase transition than Nf = 2 Wilson quarks with the pla-
quette gauge action at a comparable value of the lattice
spacing. For the moment we have no detailed information
on the dependence of the phase structure on the parame-
ter c1 in the gauge action which multiplies the rectangular
Wilson loops. It is possible that the optimal choice is dif-
ferent from c1 = −1.4088, for instance, c1 = −0.331 for
to the Iwasaki action or c1 = −1/12 for the tree-level
improved Symanzik action. The best choice of c1 might
also be influenced by the positivity problem of improved
actions [31] and/or by the convergence rate of lattice per-
turbation theory [37].

An important open question, which remains to be in-
vestigated in the future, is the β-dependence of the phase
structure for Wilson-type lattice fermions. It is expected
that closer to the continuum limit the minimal pion mass
and the jump in the average plaquette become smaller
and finally, in the continuum, the first order phase transi-
tion line in the plane of untwisted and twisted quark mass
shrinks to a first order phase transition point. The faster
this actually happens the better it is for phenomenolog-
ically relevant numerical QCD simulations with Wilson-
type quarks.

Another important question is whether the DBW2
gauge action in combination with Wilson twisted mass
fermions shows a good scaling behavior. To this end, a
simulation at a higher value of β than the one used here

is necessary. For the scaling studies previous experience in
the quenched approximation [38] will be very helpful. Both
questions mentioned above are presently investigated by
our collaboration.
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